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Abstract. The density of states and the Hall conductivity of a two-dimensional electron gas
in a uniform magnetic field and in the presence of aδ-impurity are exactly calculated using
elementary field theoretic techniques. The impurity creates one localized state per Landau level,
but the Hall conductivity is unaffected. Our treatment is explicitly gauge invariant, and can be
easily adapted to other problems involving zero-range potentials.

1. Introduction

One of the most puzzling features of the quantum Hall effect is the apparent insensitivity of
the quantization of the Hall conductivityσH (in multiples ofe2/h) with respect to type of
host material, geometry of sample, presence of impurities, etc. Prange [1, 2] was probably
the first to address the question of the influence of impurities on the quantization ofσH .
For a two-dimensional electron gas in crossed electric and magnetic fields in the presence
of a δ-impurity, he showed that a localized state exists, which carries no current, while the
remaining nonlocalized states carry an extra Hall current which exactly compensates for the
part not carried by the localized state.

Notwithstanding Prange’s claim that his calculation was exact, he had in fact to resort to
some approximations. In part, this occurred because he worked with a finite (although small)
electric field, and in part because he used aδ-function potential, which is too ‘strong’ in two
(or more) dimensions [3], even in the presence of a magnetic field. As shown explicitly by
Perez and Coutinho [4], if one solves the Schrödinger equation for a square well of radius
a and depthV0(a) ∼ a−2, one finds a bound state whose energyEb → −∞ whena → 0.
In order forEb to remain finite in the limita→ 0, the depth of the well must diverge more
slowly thana−2; explicitly, V0(a) ∼ 1/a2 ln(a/R) (R is some constant with dimension of
length). Working with this regularized version of theδ-function, they managed to find a
spectrum similar to the one found by Prange.

The purpose of this paper is to revisit this problem using elementary field theoretic
techniques. There are a couple of reasons for doing things this way: (i) it is very easy to
find the Feynman propagator in the presence of aδ-impurity [5, 6], and (ii) the density of
states and the conductivity tensor can be computed exactly, in an explicitly gauge-invariant
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way. The very singular nature of theδ-function potential in two dimensions shows up in
our treatment as an infinity in the propagator, but to deal with it is a very simple exercise
in renormalization [6].

Our calculations essentially confirm Prange’s results.

2. The Feynman propagator

Let us consider an electron gas in two dimensions in a uniform magnetic field, in the
presence of aδ-function potential at the origin. Its Lagrangian density is given by (we use
units such thatm = h̄ = c = 1)

L = ψ†(i∂t −H + µ)ψ. (1)

The ‘one-particle Hamiltonian’H can be split into two parts:H = H0+ V (x), where

H0 = − 1
2(∇− ieA)2 V (x) = λδ2(x). (2)

The vector potentialA generates a uniform magnetic fieldB (= ∂1A2 − ∂2A1), andµ
denotes the chemical potential.

As we shall see in the next section, the particle density and the conductivity of the system
can be computed once one knows the Feynman propagator, which satisfies the following
equation (x ≡ (t,x)):

(i∂t −H + µ)xG(x, x ′) = δ3(x − x ′). (3)

SinceH is time independent, we can look for a solution of (3) in the form

G(x, x ′) =
∫ ∞
−∞

dω

2π
e−iω(t−t ′)G(ω;x,x′). (4)

This in fact is a solution of (3), providedG(ω;x,x′) is a solution of

(ω −H + µ)xG(ω;x,x′) = δ2(x− x′). (5)

This can be solved in the usual way as

G(ω;x,x′) =
∑
n

ψn(x)ψ
∗
n (x
′)

ω − En + µ (6)

whereEn andψn(x) are the eigenvalues and eigenfunctions ofH , respectively. SinceH
is a Hermitian operator, its eigenvalues are real, so that a prescription must be provided to
deal with the poles ofG(ω;x,x′) when one performs the integral overω in (4). For the
Feynman propagator, this amounts [7] to a deformation of the integration contour in the
complexω-plane as indicated in figure 1.

Defining the ‘unperturbed’ propagatorG0(ω;x,x′) as the solution of (5) withV = 0,
we can formally solve forG as

G = G0+G0VG0+G0VG0VG0+ · · · . (7)

(The product of two operatorsF andG is defined as(FG)(x,x′) ≡ ∫ d2y F(x,y)G(y,x′),
andV (x,x′) stands forV (x)δ2(x − x′).) Because of the very simple form ofV , all the
integrals in (7) can be performed exactly, and the series can be summed in closed form (we
drop the dependence onω for simplicity):

G(x,x′) = G0(x,x
′)+ λG0(x, 0)

∞∑
n=0

[λG0(0, 0)]nG0(0,x′)

= G0(x,x
′)+ G0(x, 0)G0(0,x′)

1
λ
−G0(0, 0)

. (8)
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Figure 1. Integration contour in the complexω-plane used in the definition of the Feynman
propagator.

One can verify, by direct substitution in equation (5) (withV = 0), that the ‘unperturbed’
Feynman propagator is given by (eB is assumed positive)

G0(ω;x,x′) = eB

2π
M(x,x′)e−eB(x−x

′)2/4
∞∑
n=0

Ln
(
eB(x− x′)2/2)

ω − (n+ 1
2)eB + µ

(9)

whereLn(z) is a Laguerre polynomial [8] andM(x,x′) is a gauge-dependent factor, which
can be written in a gauge covariant way as

M(x,x′) = exp

{
ie
∫ x

x′
A(z) · dz

}
(10)

the integral being performed along a straight line connectingx′ to x.
Given the explicit form ofG0(ω;x,x′), (8) gives the solution of equation (5) but, as it

stands, it is meaningless: the denominator of the second term on the r.h.s. is logarithmically
divergent. However, this divergence can be absorbed in a redefinition of the ‘coupling
constant’λ: introducing a convergence factor e−αn in the sum over Landau levels, one
finds (z ≡ 1

2 − (ω + µ)/eB)

G0(ω; 0, 0) = eB

2π

∞∑
n=0

e−αn

ω − (n+ 1
2)eB + µ

= − 1

2π

[ ∞∑
n=0

e−αn
(

1

z+ n −
1

n+ 1

)
+
∞∑
n=0

e−αn

n+ 1

]
≈ 1

2π
[γ + ψ(z)+ lnα] (α→ 0+) (11)

ψ(z) denotes the digamma function andγ = 0.577. . . is Euler’s constant [9]. Now, we
define a renormalized ‘coupling constant’λR as

1

λR
= 1

λ
− 1

2π
(γ + lnα) (12)

and makeλ depend onα in such a way thatλR remains finite† in the limit α→ 0+.

† Note that, for this to be possible,λ must be negative, i.e. the potential is attractive. If one starts with a repulsive
δ-potential, there is no way to deal with the divergent terms in the perturbative expansion ofG. This reflects the
fact that in dimensionsD > 2 a repulsiveδ-potential expels theS-waves from the Hilbert space [3]. In this paper
we consider only the attractive case.
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In terms of the renormalized ‘coupling constant,’ equation (8) becomes

G(x,x′) = G0(x,x
′)+ G0(x, 0)G0(0,x′)

1
λR
− 1

2π ψ
(

1
2 − ω+µ

eB

) ≡ G0(x,x
′)+G1(x,x

′) (13)

which is now well defined.

3. Particle density, localized states and Hall conductivity

3.1. Particle density

The particle density is given by [7]

n(x) = −i lim
t ′→t+0

G(t,x; t ′,x). (14)

The ‘unperturbed’ part ofn(x) is position independent:

n0 = −i lim
α→0+

lim
ε→0+

∫
dω

2π
eiωε eB

2π

∞∑
n=0

e−αn

ω − (n+ 1
2)eB + µ

. (15)

Because of the exponential in front of the sum, one can close the contour depicted in figure 1
with a semicircle of infinite radius in the upper half-plane, and use residues to evaluate the
integral. The result, after taking the limitsε→ 0+ andα→ 0+ (in this order), is

n0 = eB

2π

∞∑
n=0

θ(µ− (n+ 1
2)eB) (16)

whereθ(x) is the Heaviside step function.
With respect to the ‘perturbed’ part ofn(x), it is easier to computeN1 ≡

∫
d2x n1(x),

wheren1(x) ≡ n(x)− n0:

N1 = −i lim
ε→0+

∫
dω

2π
eiωε

∫
d2x

G0(ω;x, 0)G0(ω; 0,x)
1
λR
− 1

2π ψ
(

1
2 − ω+µ

eB

) . (17)

Performing the integral overx with the help of the identity
∫∞

0 e−zLm(z)Ln(z) dz = δm,n
one finds:

N1 = − i

4π2eB
lim
ε→0+

∫
dω eiωε ψ ′

(
1
2 − ω+µ

eB

)
1
λR
− 1

2π ψ
(

1
2 − ω+µ

eB

) (18)

whereψ ′(z) = dψ(z)/dz. The integration overω can also be performed using residues, but
now there are two classes of poles to consider. The poles of the first class have the form
ω(1)n = −µ+ (n+ 1

2)eB (n = 0, 1, 2, . . .). They are second-order poles ofψ ′, but are also
simple poles ofψ , and so are simple poles of the integrand. Their contribution toN1 reads

N
(1)
1 = −

∞∑
n=0

θ(µ− (n+ 1
2)eB). (19)

The poles of the second class are given by the roots of the equation

1

λR
− 1

2π
ψ

(
1

2
− ω + µ

eB

)
= 0. (20)

Examining the graph of the digamma function [9] one realizes that the roots of equation (20)
have the formω(2)n = −µ+ (kn + 1

2)eB, wherek0 < 0 andn− 1< kn < n (n = 1, 2, . . .).
Their contribution toN1 has the opposite sign:

N
(2)
1 =

∞∑
n=0

θ(µ− (kn + 1
2)eB). (21)
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Taking into account an area factorA, one finally obtains the following result forN ≡∫
d2x n(x):

N =
(
eB

2π
A− 1

) ∞∑
n=0

θ(µ− (n+ 1
2)eB)+

∞∑
n=0

θ(µ− (kn + 1
2)eB). (22)

This result has a very simple physical interpretation: since the potential has zero-range,
only theS-waves are affected by it. They are expelled from the Landau levels (which have
eB/2π states per unit area) and mix among themselves to give new states with energies
equal to(kn + 1

2)eB. The explicit form of their wavefunctions are obtained in the next
section.

3.2. Localized states

The wavefunctions of the localized states can also be obtained from the Green function.
According to (6) and (13),

ψ`(x)ψ
∗
` (x
′) = lim

ω→ω(2)`
(ω − ω(2)` )G(ω;x,x′)

= 2πeB

ψ ′(−k`)G0(ω
(2)
` ;x, 0)G0(ω

(2)
` ; 0,x′). (23)

It follows from this and equation (9) that

ψ`(x) =
√

eB

2πψ ′(−k`)M(x, 0)e−eBx
2/4

∞∑
n=0

Ln(eBx
2/2)

k` − n . (24)

For the lowest-energy bound state (` = 0), the generating function of Laguerre polynomials,
equation (A4), allows us to express the sum in (24) as an integral: sincek0 < 0, we may
write

∞∑
n=0

Ln(ξ)

k0− n = −
∞∑
n=0

Ln(ξ)

∫ ∞
0

ds e(k0−n)s

= −
∫ ∞

0
ds ek0s

∞∑
n=0

Ln(ξ)e
−ns

= −
∫ ∞

0

ds

1− e−s
exp

(
k0s − ξ

es − 1

)
. (25)

Changing the variable of integration froms to z = (es − 1)−1, we find
∞∑
n=0

Ln(ξ)

k0− n = −
∫ ∞

0
e−ξzz−k0−1(1+ z)k0 dz = −0(−k0)U(−k0, 1, ξ) (26)

whereU(a, b, z) is the Kummer function which is singular at the origin [9].
Combining (24) and (26) we finally find

ψ0(x) = −
√

eB

2πψ ′(−k0)
0(−k0)M(x, 0)e−eBx

2/4U(−k0, 1, eBx2/2). (27)

This has precisely the form found by Perez and Coutinho [4] using the method discussed
in the introduction.

Although the conditionk0 < 0 was essential for obtaining (26), this expression can
be analitically continued fork0 > 0 (k0 6= 1, 2, . . .), thus generalizing (27) for the
other localized states. Note also that, although they diverge at the origin (U(a, 1, z) ≈
−[ln z+ ψ(a)]/0(a) when |z| → 0), the wavefunctionsψ`(x) are normalizable.
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3.3. Hall conductivity

Now, let us consider the Hall conductivity. In the linear response approximation, it is given
by [7]

σ21(x) = e2

2
lim

t ′→t+0
(Dx2
−D∗x ′2)

∫
d3y G(x, y)y1G(y, x

′)
∣∣∣∣
x′=x

= e2

2
lim
ε→0+

∫
dω

2π
eiωε(Dx2 −D∗x ′2)

∫
d2y G(ω;x,y)y1G(ω;y,x′)

∣∣∣∣
x′=x

(28)

whereD = ∇ − ieA is the gauge-covariant derivative, andD∗ is its complex conjugate.
After performing the derivatives inx and the integration overy (for the latter, it is useful to
use the identities [8]Ln(z) = L1

n(z)− L1
n−1(z) and

∫∞
0 ze−zL1

m(z)L
1
n(z) dz = (n+ 1)δm,n),

the ‘unperturbed’ piece of the Hall conductivity, obtained by replacingG with G0 in (28),
reads

σ
(00)
21 =

ie3B

8π2
lim
α→0+

lim
ε→0+

∫
dω eiωε

∞∑
n=0

[(2n+ 1)f 2
n − 2(n+ 1)fnfn+1] (29)

where

fn ≡ e−αn

ω − (n+ 1
2)eB + µ

. (30)

Performing the remaining integral (along the contour of figure 1), and taking the limits
ε, α→ 0+, one finally obtains

σ
(00)
21 = −

e2

2π

∞∑
n=0

θ(µ− (n+ 1
2)eB). (31)

The ‘perturbed’ piece of the Hall conductivity, obtained by replacingG with G1 in
equation (28), is easily shown to be zero (the integrand is an odd function ofy1). One can
also compute exactly the space average of the ‘perturbed–unperturbed’ pieces (in which one
of theG’s in equation (28) is replaced byG0 and the other byG1); the calculation is rather
tedious (it is sketched in the appendix) but the result is remarkably simple: it is zero.

Since all that remains is the ‘unperturbed’ piece ofσ21, we recover the remarkable result
of Prange that the Hall conductivity of a two-dimensional electron gas is not affected by a
δ-impurity, even though such an impurity is capable of producing localized states.

As a final remark, note that there is a simple reason why the correction to the Hall
conductivity should vanish: as shown by Středa [10], when the chemical potential is in an
energy gap the Hall conductivity is given by the following expression:

σ21 = −ec
A

∂N

∂B
(32)

whereN is the number of states below the chemical potentialµ andA is the area of the
system. WithN given by equation (22) (remembering thatc = 1 in our units), it follows
from the above expression and from equation (31) thatσ21 = σ (00)

21 .

Note added in proof. The Green’s function of a particle in a uniform magnetic field in the presence of a short-range
impurity was previously obtained by Gesztezyet al (Gesztezy F, Holden H anďSeba P 1989 On point interactions
in magnetic field systemsSchrödinger Operators, Standard and Non-standarded P Exner and P̌Seba (Singapore:
World Scientific) pp 147–64). We thank Professor Pavel Exner for calling our attention to that paper.
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Appendix

In this appendix we sketch the calculation of the spatial average ofσ
(01)
21 (x), obtained

by replacing the firstG in equation (28) withG0 and the second withG1. An explicit
calculation shows that

(Dx2 −D∗x ′2)
∫

d2y G0(ω;x,y)y1G1(ω;y,x′)
∣∣∣∣
x′=x

= eBy1G0(y, 0)
1
λR
− 1

2π ψ
(

1
2 − ω+µ

eB

){ [−ix1+ iy1

2
+ y2

2

]
G0(x,y)G0(0,x)

+(x2− y2)G0(x,y)G0(0,x)− x2G0(x,y)G0(0,x)
}

(A1)

where G0 is obtained fromG0 by replacing the Laguerre polynomialsLn(z) by their
derivatives with respect to the argument,L′n(z). It follows from the explicit form of
G0 and G0 and from the identityL′n(z) = −L1

n−1(z) that, when calculatingσ (01)
21 ≡

A−1
∫

d2x σ
(01)
21 (x), one has to deal with integrals which, after the change of variables

(x,y)→√eB/2(x,y) is performed, have the following form:

I
αβγ

`mn [P(xi, yj )] ≡
∫

d2x d2y e−F(x,y)P (xi, yj )Lα` (x
2)Lβm((x− y)2)Lγn (y2) (A2)

where

F(x,y) = iεij xiyj + 1
2[x2+ (x− y)2+ y2] (A3)

andP(xi, yj ) is a polynomial (of second degree) inxi , yj .
With the help of the generating function of Laguerre polynomials [8],

(1− t)−1−α exp

(
tz

t − 1

)
=
∞∑
n=0

Lαn(z)t
n (|t | < 1) (A4)

we define another generating function:

Zαβγ (t, u, v;p, q) ≡
∞∑

`,m,n=0

I
αβγ

`mn [ep·x+q·y]t`umvn

= (1− t)−1−α(1− u)−1−β(1− v)−1−γ
∫

d2x d2y ep·x+q·y−F(x,y)

× exp

{
tx2

t − 1
+ u(x− y)

2

u− 1
+ vy2

v − 1

}
(|t |, |u|, |v| < 1). (A5)

Performing the integrals overx andy, we obtain

Zαβγ (t, u, v;p, q) = 4π2ηeη(ap
2+bq2+cp·q−iεij piqj )

(1− t)1+α(1− u)1+β(1− v)1+γ (A6)

where

a = 1− uv
(1− u)(1− v) (A7a)
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b = 1− tu
(1− t)(1− u) (A7b)

c = 1+ u
1− u (A7c)

η = (1− t)(1− u)(1− v)
4(1− tuv) . (A7d)

The integrals in (A2) can then be obtained as the coefficients of the expansion in a power
series int , u andv of

P(∂pi , ∂qj )Zαβγ (t, u, v;p, q)|p=q=0. (A8)

The first type of integrals we need to evaluate isI 000
`mn[−ix1y1+(iy2

1+y1y2)/2]. Following
the recipe given above, we obtain

∞∑
`,m,n=0

I 000
`mn[−ix1y1+ (iy2

1 + y1y2)/2]t`umvn

=
(
−i

∂2

∂p1∂q1
+ i

2

∂2

∂q2
1

+ 1

2

∂2

∂q1∂q2

)
Z000(t, u, v;p, q)

∣∣∣∣
p=q=0

= 4π2η2(−ic + ib)

(1− t)(1− u)(1− v) =
iπ2(t − u)(1− v)

4(1− tuv)2

= iπ2

4
(t − u)(1− v)

∞∑
k=1

(k + 1)tkukvk. (A9)

It follows that

I 000
`mn[−ix1y1+ (iy2

1 + y1y2)/2] = iπ2

4
[(m+ 1)δ`,m+1(δn,m − δn,m+1)− (m↔ `)] (A10)

so that (fk ≡ [ω − (k + 1
2)eB + µ]−1)

∞∑
`,m,n=0

I 000
`mn[−ix1y1+ (iy2

1 + y1y2)/2]f`fmfn = 0. (A11)

The other two types of integrals we need can be found in an analogous way:

I 010
`mn[x2y1− y1y2] = iπ2

4
(m+ 1)(δ`,m − δ`,m+1)(δn,m − δn,m+1) (A12)

I 100
`mn[−x2y1] = − iπ2

4
(`+ 1)(δm,` − δm,`+1)(δn,` − δn,`+1). (A13)

Therefore,

∞∑
`,m,n=0

(I 010
`,m−1,n[x2y1− y1y2] + I 100

`−1,m,n[−x2y1])f`fmfn = 0. (A14)

It follows from (A1), (A11), (A14) and the explicit form ofG0 andG0 that σ (01)
21 = 0. An

analogous calculation shows thatσ (10)
21 = 0, too.
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